翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

dependence logic : ウィキペディア英語版
dependence logic
Dependence logic is a logical formalism, created by Jouko Väänänen,〔Väänänen 2007〕 which adds ''dependence atoms'' to the language of first-order logic. A dependence atom is an expression of the form =\!\!(t_1 \ldots t_n), where t_1 \ldots t_n are terms, and corresponds to the statement that the value of \!t_n is functionally dependent on the values of t_1\ldots t_.
Dependence logic is a logic of imperfect information, like branching quantifier logic or independence-friendly logic: in other words, its game theoretic semantics can be obtained from that of first-order logic by restricting the availability of information to the players, thus allowing for non-linearly ordered patterns of dependence and independence between variables. However, dependence logic differs from these logics in that it separates the notions of dependence and independence from the notion of quantification.
==Syntax==
The syntax of dependence logic is an extension of that of first-order logic. For a fixed signature σ = (''S''func, ''S''rel, ar), the set of all well-formed dependence logic formulas is defined according to the following rules:

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「dependence logic」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.